Oxford®
Partial Knee
Research shows that surgeons utilizing Partial Knee Arthroplasty (PKA) for at least 20% of their annual knee replacements experienced a decrease in their revision rate. One study indicated that 47.6% of knee replacement patients, out of a consecutive series of 200, are candidates for PKA.

With over 40 years’ clinical heritage, the Oxford Partial Knee is the most widely used, clinically proven partial knee system in the world. PKA patients have demonstrated increased patient satisfaction, better self perceived functionality and fewer postoperative complications compared to total knee patients.

- Partial knee patients have also been found to be more likely to forget their artificial joint in daily life and consequently may be more satisfied.
- A multi-center study demonstrated decreased morbidity and complications of PKA compared to TKA
- Proven and reproducible technique with Microplasty Instrumentation
- Retention of the ACL is reported to result in better proprioception
- Best-in-class continuous education programme
- PKA is a cost effective treatment for unicompartmental osteoarthritis

* Study included Oxford Partial Knees as well as other ‘non-Biomet’ partial knees.
1 Femoral Component
• Conforming, spherical design minimizes contact stress throughout entire range of motion
• Curved inner geometry designed for minimal bone removal

2 Mobile Meniscal Bearing
• Mobile bearing designed to remain fully congruent with the femoral and tibial components throughout the entire range of motion\(^\text{13}\)
• Proven wear resistance with ArCom\(^\text{®}\) Direct Compression Molded Polyethylene\(^\text{14}\)

3 Tibial Component
• Anatomical shape designed for optimal bone coverage

Cementless Fixation
The Oxford Partial Knee for medial compartment replacement is now available with PPS\(^\text{®}\) Porous Plasma Spray & Hydroxyapatite (HA) coating for cementless fixation.

• Offers twin-peg femoral design to allow for additional rotational stability
• Plasma sprayed porous titanium coating provides mechanical interlock with the substrate
• Provides improved fixation\(^\text{15}\)
• Reduces the incidence of radiolucencies seen under the tibial components on screened radiographs\(^\text{15,17}\)
• Designed to eliminate possible known failure mechanisms caused by poor cementing technique
• Reduces operating time as it eliminates cement preparation and curing time\(^\text{15}\)
• In a multicenter study of 1,000 patients, the cementless Oxford Partial Knee has demonstrated a 97.2% survivorship at 6 years\(^\text{18}\)

Cemented Survivorship
Cementless Survivorship

<table>
<thead>
<tr>
<th></th>
<th>15 years(^\text{19})</th>
<th>20 years(^\text{4})</th>
<th>6 years(^\text{18})</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>91%</td>
<td>97.2%</td>
<td></td>
</tr>
</tbody>
</table>
Microplasty Instrumentation simplifies the surgical technique, providing for accurate and reproducible implant positioning.9

The soft-tissue referencing Microplasty Instrumentation references the posterior femoral condyle to set the amount of tibial resection. This bone-conserving approach to tibial preparation resulted in a greater number of thinner, 3 mm and 4 mm, bearings implanted (92\% vs. 84\%; \textit{p}=0.001)9 compared to Phase 3 Instrumentation, which has demonstrated better survivorship than bearings 5 mm or thicker.5

- Proprietary tibial resection guide that uses patients’ normal MCL tension to determine level of tibial resection
- Spherical mill and spigots have been designed to provide a simplified approach to balancing the flexion and extension gaps
 - Size specific femoral instrumentation allows precise 1 mm incremental bone removal
- The femoral drill guide linked to the IM rod provides for accurate and reproducible alignment9
- The design of the anterior mill, in combination with the anti-impingment guide, is intended to allow for precise removal of impinging osteophytes and anterior bone
- Microplasty Instrumentation has shown an average reduction in OR time of 9 minutes when compared to Phase 3 Instrumentation20
- Oxford Microplasty Instrumentation has also been shown to reduce the risk of dislocation compared to Phase 3 Instrumentation21
<table>
<thead>
<tr>
<th>Sources</th>
<th>Type</th>
<th>N at study start*</th>
<th>Survivorship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergeson, A., et al. Medial mobile bearing unicompartmental knee arthroplasty early survivorship and analysis of failures in 1000 consecutive cases. Journal of Arthroplasty. 2013.</td>
<td>Publication</td>
<td>1,000 knees</td>
<td>95.2% at a mean of 44.4 months</td>
</tr>
</tbody>
</table>

*All patients are Oxford Partial Knees unless stated otherwise
Sources

<table>
<thead>
<tr>
<th>Sources</th>
<th>Type</th>
<th>N at study start*</th>
<th>Survivorship</th>
</tr>
</thead>
</table>

Cementless Results

<table>
<thead>
<tr>
<th>Sources</th>
<th>Type</th>
<th>N at study start*</th>
<th>Survivorship</th>
</tr>
</thead>
</table>

All patients are Oxford Partial Knees unless stated otherwise
References